Search results for "Shear Stresses"

showing 3 items of 3 documents

Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows.

2017

Disturbed flow can eliminate the alignment of endothelial cells in the direction of laminar flow, and significantly impacts on atherosclerosis in collateral arteries near the bifurcation and high curvature regions. While shear stress induced Rac polarity has been shown to play crucial roles in cell polarity and migration, little is known about the spatiotemporal map of Rac under disturbed flow, and the mechanism of flow-induced cell polarity still needs to be elucidated. In this paper, disturbed flow or laminar flow with 15 dyn/cm2 of average shear stress was applied on bovine aortic endothelial cells (BAECs) for 30 minutes. A genetically-encoded PAK-PBD-GFP reporter was transfected into BA…

0301 basic medicineFluorescence-lifetime imaging microscopyCell Membraneslcsh:MedicineMicrotubulesCell membraneLaminar Flow0302 clinical medicineCell polarityFluorescence microscopeMembrane fluidityCytoskeletonlcsh:ScienceShear StressesCytoskeletonAortaMultidisciplinaryChemistryPhysicsClassical MechanicsCell Polarityrac GTP-Binding Proteinsmedicine.anatomical_structurePhysical SciencesMechanical StressCellular Structures and OrganellesResearch ArticleCell PhysiologyImaging TechniquesMembrane FluidityFluid MechanicsResearch and Analysis MethodsContinuum Mechanics03 medical and health sciencesFluorescence ImagingShear stressmedicineAnimalsFluid Flowlcsh:RBiology and Life SciencesFluid DynamicsLaminar flowCell Biology030104 developmental biologyBiophysicsCattlelcsh:QEndothelium Vascular030217 neurology & neurosurgeryPLoS ONE
researchProduct

Investigation of the hemodynamic flow conditions and blood-induced stresses inside an abdominal aortic aneurysm by means of a SPH numerical model.

2019

The estimation of blood flow-induced loads occurring on the artery wall is affected by uncertainties hidden in the complex interaction of the pulsatile flow, the mechanical parameters of the artery, and the external support conditions. To circumvent these difficulties, a specific tool is developed by combining the aorta displacements measured by an electrocardiogram-gated-computed tomography angiography, with the blood velocity field computed by a smoothed particle hydrodynamics (SPH) numerical model. In the present work, the SPH model has been specifically adapted to the solution of the 3D Navier-Stokes equations inside a domain with boundaries of prescribed motion. Images of the abdominal…

Materials scienceTime FactorsQuantitative Biology::Tissues and OrgansPhysics::Medical PhysicsBiomedical EngineeringPulsatile flowHemodynamicsSettore ICAR/01 - IdraulicaPhysics::Fluid DynamicsAneurysmDiastolemedicine.arterymedicineShear stressPressureHumansComputer SimulationMolecular BiologyAortamedicine.diagnostic_testCardiac cycleApplied MathematicsHemodynamicsModels CardiovascularMechanicsmedicine.diseaseAbdominal aortic aneurysmBiomechanical PhenomenaComputational Theory and MathematicsModeling and SimulationAngiographycardiovascular systemHydrodynamicsStress MechanicalInfrarenal abdominal aorta aneurysm shear stresses arterial wall SPH moving boundarySoftwareAlgorithmsBlood Flow VelocityAortic Aneurysm AbdominalInternational journal for numerical methods in biomedical engineeringREFERENCES
researchProduct

A versatile bioreactor for dynamic suspension cell culture. Application to the culture of cancer cell spheroids.

2016

A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein prese…

0301 basic medicineBiophysical SimulationsMaterials scienceMultiphysicsMaterials ScienceBiophysicslcsh:MedicineMarine and Aquatic SciencesApoptosisFluid MechanicsResearch and Analysis MethodsContinuum Mechanics03 medical and health sciencesMaterials PhysicsWater QualityShear stressBioreactorIntercellular connectionDissolved Oxygenlcsh:ScienceSuspension (vehicle)Shear StressesFlow RateMultidisciplinaryCell DeathPhysicslcsh:RSpheroidClassical MechanicsBiology and Life SciencesComputational BiologyFluid DynamicsCell BiologyCell CulturesSuspension CulturesShear (sheet metal)030104 developmental biologyCell ProcessesCell culturePhysical SciencesEarth SciencesMechanical Stresslcsh:QBiological CulturesSedimentationBiological systemResearch Article
researchProduct